Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 88
  • Home
  • Print this page
  • Email this page


 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2019  |  Volume : 16  |  Issue : 2  |  Page : 104-109

Efficacy of stevioside sweetener on pH of plaque among young adults


1 Department of Public Health Dentistry, Azeezia College of Dental Sciences and Research, Kollam, Kerala, India
2 Department of Public Health Dentistry, Faculty of Dental Sciences, MSRUAS, Bengaluru, Karnataka, India
3 MDS in Public Health Dentistry, Moulaali, Hyderabad, Telangana, India

Date of Web Publication29-Jan-2019

Correspondence Address:
Dr. E Saira Siraj
Senior Lecturer, Department of Public Health Dentistry, Azeezia College of Dental Sciences and Research, Meeyannoor P.O, Kollam - 691 537, Kerala
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1735-3327.250966

Rights and Permissions
  Abstract 


Background: Stevioside is a natural herbal sweetener extracted from Stevia rebaudiana. An in vitro study has proved the antibacterial efficacy of 0.2% Stevia aqueous solution against Streptococcus mutans and Lactobacillus acidophilus, and the present study was conducted to clinically evaluate the efficacy of Stevia leaf extract and Stevia product on plaque pH, when compared with sucrose solution.
Materials and Methods: A clinical trial was conducted among a sample of 22 undergraduate students who volunteered. After obtaining consent, students were instructed not to brush at night and not to use any mouth rinse during the course of the study. Baseline plaque pH was measured in situ using digital pH meter. Students were asked to rinse for 1 min with 0.2% aqueous solution of Stevia leaf extract and plaque pH was measured in situ at 4 time points (5, 10, 15, and 30 min) after each rinse. After a washout period of 2 days, 10% sucrose and 1% Stevia product solutions were similarly tested. Statistical analysis was performed using analysis of variance (ANOVA) test and repeated measures ANOVA. Tukey's HSD test was used to obtain multiple comparisons. The level of significance was set to be at P < 0.05.
Results: At 5, 10, 15, and 30 min, a significant difference in mean plaque pH values was observed between three test solutions (P < 0.000). Post hoc Tukey's HSD test showed that the difference in mean pH values between aqueous Stevia extract and sucrose and Stevia product and sucrose was highly significant (P < 0.000).
Conclusion: Stevia leaf extract and commercially available Stevia product did not significantly affect plaque pH values, implying that two solutions are non-fermentable and do not support bacterial survival.

Keywords: Dental caries, dental plaque, pH, Stevia rebaudiana, sucrose


How to cite this article:
Siraj E S, Pushpanjali K, Manoranjitha B S. Efficacy of stevioside sweetener on pH of plaque among young adults. Dent Res J 2019;16:104-9

How to cite this URL:
Siraj E S, Pushpanjali K, Manoranjitha B S. Efficacy of stevioside sweetener on pH of plaque among young adults. Dent Res J [serial online] 2019 [cited 2019 Jul 21];16:104-9. Available from: http://www.drjjournal.net/text.asp?2019/16/2/104/250966




  Introduction Top


Dental caries is the most prevalent, ubiquitous infectious disease affecting all the age groups. Fermentable dietary sugar has been implicated as a crucial factor in dental caries and sucrose is an important factor that contributes to the formation and development of the bacterial plaque.[1] Stephan in his classic studies in the early 1940s showed that dental plaque exposed to sucrose could rapidly produce acids, causing a rapid drop in pH followed by a gradual recovery toward the baseline plaque pH.[2] Dental caries despite being preventable continues to be a public health concern in developing countries like India.[3] With support from the evidence, replacement of sucrose with non-fermentable sugar substitute has become an important strategy in caries prevention.[4],[5] Most of the non-fermentable sweeteners has its own inherent side effects. Long-term consumption of these artificial sweeteners can cause adverse effects in humans, thereby raising health concerns.[6]

The popularity of stevioside as a natural herbal sweetener extracted from Stevia rebaudiana (also known as sweet tulsi or sugar leaf) is growing rapidly throughout the world. It is extensively grown in places such as Brazil, Central America, and Israel but is native to Paraguay. It has also been introduced in India since the past decade. Stevioside and rebaudioside A are the most represented glycosides in S. rebaudiana leaves which are responsible for sweetening effect of Stevia. Stevioside tastes between 200 and 300 times sweeter than sucrose and its content varies between 4% and 20% of the dry weight of the leave, depending on the growing conditions. Rebaudioside A has a clean sweet taste and it is more water-soluble than stevioside; the sweetening power is between 250 and 450 times higher than sucrose.[7],[8],[9],[10] Stevia extracts are officially approved as food additives in Brazil, Korea, Japan, the United States, and Iran.[11] Besides sweetness, stevioside along with Rebaudioside A offers other therapeutic benefits as they have antihyperglycemic, antihypertensive, anti-inflammatory, antitumor, antidiarrheal, diuretic, and immunomodulatory actions.[12],[13],[14]

The antibacterial activity of different extracts of S. rebaudiana leaves against bacteria that are important in dental caries and oral health has been proved in in vitro studies. Das et al., 1992 in an in vitro study proved the noncariogenic potential of stevioside.[15] Mohammadi-Sichani et al., Debnath et al., Gamboa and Chaves, and Ajagannanavar et al. demonstrated the antimicrobial activity of Stevia in various solvents against Streptococcus mutans and Lactobacillus acidophilus.[11],[16],[17],[18] The noncariogenic potential of Stevia extracts – stevioside and rebaudioside in vivo – was proved in a study conducted by Brambilla et al. in 2013.[19] The antiplaque and antigingivitis properties of Stevia have been reported by Vandana et al.[20] However, no studies on the effect of aqueous solution of Stevia leaf extract and commercially available Stevia product on plaque pH are available. The antibacterial efficacy of 0.2% aqueous solution of Stevia leaf extract against S. mutans and L. acidophilus was studied in vitro in the Department of Public Health Dentistry, FDS, MSRUAS. However, the antibacterial efficacy of commercially available Stevia product could not be assessed, and hence, we decided to further explore it clinically. The objective of this study was to evaluate clinically the effect of Stevia leaf extract and Stevia product on plaque pH when compared with sucrose solution.


  Materials and Methods Top


This was an interventional study with 22 participants carrying out mouth rinsing with different solutions such as 0.2% aqueous Stevia, 10% sucrose, and 1% Stevia product. Study participants were the student volunteers of Bachelor of Dentistry, aged between 18 and 25 years. The study proposal was drafted and the ethical clearance was obtained from the Institutional Ethics Committee and registered at http://www.ctri.nic.in (CTRI/2017/10/010154).

Sample size calculation

Based on the previous study, the observed mean difference was calculated to be 0.5.[17] Assuming the superiority margin of 0.4 with an effect size of 0.53, power 80%, and alpha error 5%, a sample size of 22 was calculated using nMaster sample size software version 2.0. (Department of Biostatistics, Christian Medical College, Vellore, India).

Potential participants for this study were identified from undergraduate students and a complete dental examination was performed. The inclusion criteria were students aged between 18 and 25 years and decayed, missing, and filled teeth (DMFT) score ≥1. Students were excluded if they were undergoing orthodontic treatment or with a history of taking antibiotics within 4 weeks and during the study period.

Preparation of rinses

The antibacterial efficacy of 0.2% aqueous solution of Stevia leaf extract against S. mutans and L. acidophilus was studied in vitro in the Department of Public Health Dentistry, FDS, MSRUAS. In disc diffusion method, minimal inhibitory concentration (MIC) of aqueous Stevia extract against S. mutans was determined at 2 mg/ml concentration. Based on this finding, the following rinsing solutions were prepared as follows.

Rinse 1: Aqueous Stevia solution was prepared by dissolving 0.2 g of the dried Stevia leaf powder in 100 ml of distilled water and brought to boil at 50°C for 2 min and filtered (0.2% aqueous Stevia solution). Rinse 2: Sucrose test solution – considering the sweetness equivalence, it was prepared by dissolving 10 g of sucrose in 100 ml of distilled water (10% sucrose solution).[21] Rinse 3: Stevia product solution was made from Cerovia manufactured by Stevia world. Cerovia powder is 10 times sweeter than sucrose. Adjusting the sweetness equivalence, the solution was prepared by dissolving 1 g of Cerovia powder in 100 ml of distilled water (1% Stevia product solution).

Study protocol

This interventional study was conducted over a period of 2 months. Having given informed consent, 22 volunteers fulfilling the inclusion criteria were recruited for the study. The purpose of the study was explained to the recruited study participants. They were instructed not to brush at night and not to use any mouth rinse during the course of the study. A structured proforma was designed to record information on demographic characteristics, oral hygiene practices, and sugar intake. Clinical examination was carried out using autoclaved instruments. DMFT index and Silness and Loe plaque index (1964) were recorded at the baseline. The students were instructed not to drink or eat for at least 2 hrs before pH measurements.

Plaque pH measurement

Baseline plaque pH was measured by a microelectrode attached to a digital pH meter (LUTRON PH-206). pH microelectrode was inserted at interproximal site between first molar and second premolar in first and second quadrant (16, 26).[22] In case of the presence of any restoration, measurements were done in the first and second premolars interproximal area of the same quadrant. The pH value was recorded by placing the tip of the electrode into the plaque mass and held in place until the reading on the display unit had stabilized and the data were recorded.

Instrument calibration and standardization

Initially, the tip of new pH electrode was soaked in KCl solution for several hours before use. Once prepared, the electrode was stored in a reference buffer (pH = 7). Immediately before and after each series of readings at each time point, the electrode was calibrated against standard pH buffers at pH 4 and 7 values. Between each reading, the electrode was cleaned in distilled water and dried on absorbent paper to protect against cross-contamination.

For each subject, baseline plaque pH was recorded and followed by 5, 10, 15, and 30 min interval after 1 min rinsing of 10 ml of the test solutions. After measuring the baseline plaque pH, all the students were given 10 ml of 0.2% aqueous Stevia solution. They were asked to rinse for 1 min. Quantity of rinses was measured using a measuring cup and the time was noted using a stopwatch. Plaque pH was measured at 5, 10, 15, and 30 min after the mouth rinse using the digital pH meter. One examiner performed all pH measurements who was blinded with respect to the rinse used by the students. A washout period of 2 days was given to avoid the carryover effect of the mouth rinse before the next mouth rinse is assigned. After the washout period, the second solution and third solutions were similarly tested [Figure 1].
Figure 1: Schematic representation of study design.

Click here to view


Statistical analysis

Data were analyzed using SPSS version 16.0. (IBM Corporation, Chicago, IL, USA). For comparison of mean pH values of different times within aqueous Stevia extract, sucrose, and Stevia product groups, repeated measures analysis of variance (ANOVA) test was used. ANOVA test was used to compare the mean pH values between aqueous Stevia extract, sucrose rinses, and Stevia product. This was followed by post hoc Tukey's HSD test to obtain multiple comparisons. The level of significance was set to be at P < 0.05.


  Results Top


Twenty-two volunteers took part in the study, 14 of which were female and eight were male. Mean DMFT and plaque index score were 2.09 and 0.507, respectively.

Repeated measures ANOVA showed a significant difference in the mean pH values of aqueous Stevia extract at 5 (P = 0.003) and 10 (P = 0.024) min when compared with baseline, whereas mean plaque pH of sucrose solution showed statistically significant difference at 5, 10, 15, and 30 min compared to baseline pH (P < 0.000). No statistically significant difference in pH was observed at 5, 10, 15, and 30 min with Stevia product when compared to baseline pH (P > 0.05).

ANOVA was used to compare the mean plaque pH values between aqueous Stevia extract, sucrose rinses, and Stevia product. At the baseline, there was no statistically significant difference in mean plaque pH values between the three test solutions (P = 0.314), whereas at 5, 10, 15, and 30 min, statistically significant difference in mean plaque pH values was observed between three test solutions (P < 0.000) [Table 1]. Post hoc Tukey's HSD test [Table 2] showed that the difference in mean pH values between aqueous Stevia extract and Stevia product was not statistically significant (P > 0.05). However, the difference between aqueous Stevia extract and sucrose and Stevia product and sucrose was highly significant (P < 0.000).
Table 1: Comparison of mean plaque pH values between three groups at five time points

Click here to view
Table 2: Intergroup comparison of plaque pH

Click here to view


[Figure 2] illustrates the reduction in mean plaque pH at 5, 10, 15, and 30 min interval after rinsing of three test solutions. Following sucrose rinse, the plaque pH decreased up to 5.7 nearing the critical pH value (5.5) after 5 min, whereas the plaque pH remained almost the same after rinsing with Stevia leaf extract and Stevia product solutions.
Figure 2: Mean plaque pH versus time curves for all test solutions.

Click here to view



  Discussion Top


The present study was conducted to evaluate the clinical efficacy of 0.2% aqueous solution of Stevia leaf extract and commercially available Stevia product on plaque pH, in comparison with sucrose solution. The findings showed that there was a reduction in the mean plaque pH following rinsing with 10% sucrose solution whereas the plaque pH remained almost the same after rinsing with Stevia leaf extract and Stevia product solutions. There was no statistical difference in the pH values among the students at baseline. The change in plaque pH values after rinsing with Stevia leaf extract and Stevia product solution is consistent with the findings of Brambilla et al., who investigated the effect of the two main Stevia extracts, stevioside, and rebaudioside A on plaque pH and reported that the two compounds do not support acidogenic metabolism from supragingival plaque bacteria. The probable mechanism of action could be due to an inhibitory effect of the two Stevia extracts on bacterial fermentative metabolism. In vitro part of this study confirmed the cariostatic potential of the Stevia extracts by the suppression of bacterial growth.[19]

In the present study, 0.2% concentration of aqueous Stevia extract was prepared. This was based on the findings of an in vitro study conducted in our department. In disc diffusion method, MIC of aqueous Stevia extract against S. mutans and L. acidophilus was determined at 2 mg/ml concentration. The antibacterial efficacy of Stevia product could not be proved in the in vitro study, and we decided to further explore it clinically. Considering the sweetness equivalence, sucrose and Stevia product solutions were prepared.

Various methods have been used by different investigators to determine the pH of dental plaque of which each method has its strength and weakness.[23],[24] In our study, the method used for this purpose was single-glass electrode fitted to a digital pH meter (LUTRON PH-206) which allows direct reading of interdental plaque pH. The trial was a single-blinded trial as the examiner who measured the plaque pH was blinded with respect to the rinse used by the students.

On the basis of in vitro experiments and theoretical considerations, critical pH has been reported to be in the range of 5.0–6.0, most probably 5.5. In this study, no plaque pH drop below 5.5 (critical pH) was recorded following sucrose rinse group due to methodological issues. All the participants in the study were dental students and seem to have better oral hygiene practices. Various researches have proved that mature plaque (2–3 days old) give a greater level of acid production than immature plaque. Moreover, the pH fall itself depends upon various factors such as acidogenicity of the plaque microflora, nature of the acids formed, formation of neutralizing metabolic products, buffering capacity of the plaque, concentration of substrate surrounding the bacteria, and duration of the supply of the substrate, diffusion of substrate and metabolic products in plaque, influence of the saliva environment of these parameters.[25]

In this study, mean plaque pH of aqueous Stevia extract showed significant difference at 5 and 10 min when compared with baseline. The plaque pH remained alkaline throughout different time intervals for both Stevia leaf extract and Stevia product solution. Although the antibacterial efficacy of commercially available Stevia product could not be proved in the in vitro study, clinically, it behaved in a similar way to aqueous Stevia extract solution. Most commercial processes consist of water extraction, decoloration, and purification using ion exchange resins, electrolytic techniques, or precipitating agents. The possible reason for this activity needs to be explored. Due to the nonavailability of the evidence, the results of commercially available Stevia product in altering plaque pH could not be compared. In 2017, Usha et al. proved that 0.5% S. rebaudiana extract improved the pH and buffering capacity of the saliva in a high caries risk patient.[26] Abdul Razak et al. had reported that alternative sweeteners such as equal Stevia were equally effective as xylitol in reducing the presence of extracellular matrix in streptococci biofilms.[27] This study mainly concerns with its influence on change of pH within plaque, and therefore, further researches on microbiological analysis of stevioside on cariogenic species are needed for confirmation.


  Conclusion Top


Clinically, both Stevia leaf extract and Stevia product solutions behave in a similar way as the plaque pH remained alkaline. Stevia leaf extract and commercially available Stevia product did not significantly affect plaque pH values implying that two solutions are nonfermentable and do not support bacterial survival. It appears to be a promising herbal sweetener to be used as an alternative in oral preparations and confectionaries.

Acknowledgement

We acknowledge Skanda Lifesciences private limited for providing us the facilities, Stevia World Agrotech Pvt. Ltd, Bengaluru for providing with the plant material. We also thank our Dean and management of Faculty of Dental Sciences, MSRUAS, Bengaluru, India for their support in completing the research.

Financial support and sponsorship

Nil.

Conflicts of interest

The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or nonfinancial in this article.



 
  References Top

1.
Kleinberg I. The other side of confection use and dental caries. J Can Dent Assoc 1989;55:837-8.  Back to cited text no. 1
    
2.
Walsh LJ. Dental plaque fermentation and its role in caries risk assessment. Int Dent SA Australas 2006;1:4-13.  Back to cited text no. 2
    
3.
Kalra S, Simratvir M, Kalra R, Janjua K, Singh G. Change in dental caries status over 2 years in children of Panchkula, Haryana: A longitudinal study. J Int Soc Prev Community Dent 2011;1:57-9.  Back to cited text no. 3
    
4.
Burt BA. Relative consumption of sucrose and other sugars: Has it been a factor in reduced caries experience? Caries Res 1993;27 Suppl 1:56-63.  Back to cited text no. 4
    
5.
Loesche WJ. The rationale for caries prevention through the use of sugar substitutes. Int Dent J 1985;35:1-8.  Back to cited text no. 5
    
6.
Fowler SP, Williams K, Resendez RG, Hunt KJ, Hazuda HP, Stern MP. Fueling the obesity epidemic? Artificially sweetened beverage use and long-term weight gain. Obesity (Silver Spring) 2008;16:1894-900.  Back to cited text no. 6
    
7.
Geuns JM. Stevioside. Phytochemistry 2003;64:913-21.  Back to cited text no. 7
    
8.
Kinghorn A. Overview-Stevia, the Genus Stevia. Medicinal and Aromatic Plants: Industrial Profiles. Vol. 19. London and NY: Taylor and Francis; 2002. p. 1-17.  Back to cited text no. 8
    
9.
Goyal SK, Samsher, Goyal RK. Stevia (Stevia rebaudiana) a bio-sweetener: A review. Int J Food Sci Nutr 2010;61:1-10.  Back to cited text no. 9
    
10.
Ashwell M. Stevia, nature's zero-calorie sustainable sweetener: A new player in the fight against obesity. Nutr Today 2015;50:129-34.  Back to cited text no. 10
    
11.
Debnath M. Clonal propagation and antimicrobial activity of an endemic medicinal plant Stevia rebaudiana. J Med Plants Res 2008;2:245-51.  Back to cited text no. 11
    
12.
Ahmed B, Hossain M, Islam R, Saha AK, Mandal A. A review on natural sweetener plant-stevia having medicinal and commercial importance. Agronomski Glas 2011;73:75-91.  Back to cited text no. 12
    
13.
Arora E, Khajuria V, Kumar S, Gillani Z, Sadiq S, Tandon VR, et al. Stevia: A promising herbal sweeteners. JK Sci 2010;12:212-3.  Back to cited text no. 13
    
14.
Amin K, Ozgen S, Selamoglu Z. Stevia rebaudiana: A potential boon for human health. SM J Med Plants Stud 2017;1:1005.  Back to cited text no. 14
    
15.
Das S, Das AK, Murphy RA, Punwani IC, Nasution MP, Kinghorn AD, et al. Evaluation of the cariogenic potential of the intense natural sweeteners stevioside and rebaudioside A. Caries Res 1992;26:363-6.  Back to cited text no. 15
    
16.
Mohammadi-Sichani M, Karbasizadeh V, Aghai F, Mofid MR. Effect of different extracts of Stevia rebaudiana leaves on Streptococcus mutans growth. J Med Plants Res 2012;6:4731-4.  Back to cited text no. 16
    
17.
Gamboa F, Chaves M. Antimicrobial potential of extracts from Stevia rebaudiana leaves against bacteria of importance in dental caries. Acta Odontol Latinoam 2012;25:171-5.  Back to cited text no. 17
    
18.
Ajagannanavar SL, Shamarao S, Battur H, Tikare S, Al-Kheraif AA, Al Sayed MS, et al. Effect of aqueous and alcoholic stevia (Stevia rebaudiana) extracts against Streptococcus mutans and Lactobacillus acidophilus in comparison to chlorhexidine: An in vitro study. J Int Soc Prev Community Dent 2014;4:S116-21.  Back to cited text no. 18
    
19.
Brambilla E, Cagetti MG, Ionescu A, Campus G, Lingström P. An in vitro and in vivo comparison of the effect of Stevia rebaudiana extracts on different caries-related variables: A randomized controlled trial pilot study. Caries Res 2014;48:19-23.  Back to cited text no. 19
    
20.
Vandana K, Reddy VC, Sudhir KM, Kumar K, Raju SH, Babu JN, et al. Effectiveness of stevia as a mouthrinse among 12-15-year-old schoolchildren in Nellore district, Andhra Pradesh – A randomized controlled trial. J Indian Soc Periodontol 2017;21:37-43.  Back to cited text no. 20
[PUBMED]  [Full text]  
21.
Savita SM, Sheela K, Sunanda S, Shankar A, Ramakrishna P. Stevia rebaudiana – A Functional component for food industry. J Hum Ecol 2004;15:261-4.  Back to cited text no. 21
    
22.
Roos EH, Donly KJ.In vivo dental plaque pH variation with regular and diet soft drinks. Pediatr Dent 2002;24:350-3.  Back to cited text no. 22
    
23.
Schachtele CF, Jensen ME. Comparison of methods for monitoring changes in the pH of human dental plaque. J Dent Res 1982;61:1117-25.  Back to cited text no. 23
    
24.
Lingström P, Imfeld T, Birkhed D. Comparison of three different methods for measurement of plaque-pH in humans after consumption of soft bread and potato chips. J Dent Res 1993;72:865-70.  Back to cited text no. 24
    
25.
Sharma A, Deshpande S. Effect of sucrose in different commonly used pediatric medicines upon plaque pH in human subjects. J Indian Soc Pedod Prev Dent 2011;29:144-8.  Back to cited text no. 25
[PUBMED]  [Full text]  
26.
Usha C, Ramarao S, John BM, Babu ME. Anticariogenicity of Stevia rebaudiana extract when used as a mouthwash in high caries risk patients: Randomized controlled clinical trial. World J Dent 2017;8:364-9.  Back to cited text no. 26
    
27.
Abdul Razak F, Baharuddin BA, Akbar EF, Norizan AH, Ibrahim NF, Musa MY. Alternative sweeteners influence the biomass of oral biofilm. Arch Oral Biol 2017;80:180-4.  Back to cited text no. 27
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
 
 
Search
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)  

 
  In this article
Abstract
Introduction
Materials and Me...
Results
Discussion
Conclusion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed391    
    Printed24    
    Emailed0    
    PDF Downloaded72    
    Comments [Add]    

Recommend this journal