Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 485
  • Home
  • Print this page
  • Email this page
Year : 2019  |  Volume : 16  |  Issue : 6  |  Page : 372-376

Antimicrobial and physical properties of alginate impression material incorporated with silver nanoparticles

1 Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
2 Orthodontist, Mashhad, Iran
3 Post-Graduate Student of Pediatric Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran

Correspondence Address:
Dr. Hooman Shafaee
Mashhad Dental School, Vakilabad Blvd, Mashhad
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1735-3327.270782

Rights and Permissions

Background: Self-disinfecting impression materials would reduce time and energy needed for impression disinfecting process in clinic. The aim of this study was to evaluate the antimicrobial effect of alginate mixed with nanosilver solution at a concentration of 500 ppm and 1000 ppm on common oral microorganisms and assess changes in working time, setting time, and surface detail reproduction. Materials and Methods: In this in vitro study, three groups were assigned. The first group was alginate, the second group was alginate mixed with 500 ppm nanosilver, and the third group was alginate mixed with 1000 ppm nanosilver. Antimicrobial effect on Escherichia coli, Staphylococcus aureus, and Candida albicans was studied using direct contact test in each group (n = 10). Working time (n = 10), setting time (n = 10), and surface detail reproduction (n = 10) were evaluated separately using the ISO 21563 protocol. Descriptive tables were used to describe the data. Kruskal–Wallis test used to determine significant differences in the number of colonies was counted in antimicrobial test (α = 0.05). Results: No adverse effects observed in working time, setting time, and surface detail reproduction of alginate impressions. Alginate mixed with silver nanoparticles showed no inhibitory effect on S. aureus and C. albicans, but the number of E. coli colonies were counted in the group 1000 ppm was significantly lower than 500 ppm (P = 0.001). Conclusion: Antimicrobial effect of alginate mixed with silver nanoparticles is not clinically indicated. Nevertheless, its physical features did not change significantly.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded134    
    Comments [Add]    

Recommend this journal