Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 740
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2020  |  Volume : 17  |  Issue : 1  |  Page : 10-18

Reconstruction of mandibular defects using synthetic octacalcium phosphate combined with bone matrix gelatin in rat model


1 Department of Anatomical Sciences, Cellular and Molecular Research Center, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
2 Department of Endodontics, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
3 Department of Community Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
4 Department of Pathology, University of Washington, Seattle, Washington, USA

Correspondence Address:
Dr. Fereydoon Sargolzaei-Aval
Department of Anatomical Sciences, Cellular and Molecular Research Center, School of Medicine, Zahedan University of Medical Sciences, Zahedan
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1735-3327.276228

Rights and Permissions

Background: Regeneration of bone defects remains a challenge for maxillofacial surgeons. The objective of this study was to assess the osteogenic potential of octacalcium phosphate (OCP) and bone matrix gelatin (BMG) alone and in combination with together in artificially created mandibular bone defects. Materials and Methods: In this experimental study Forty-eight male Sprague–Dawley rats (6–8 weeks old) were randomly divided into four groups. Defects were created in the mandible of rats and filled with 10 mg of OCP, BMG, or a combination of both (1/4 ratio). Defects were left unfilled in the control group. To assess bone regeneration and determine the amount of the newly formed bone, specimens were harvested at 7, 14, 21, and 56 days postimplantation. The specimens were processed routinely and studied histologically and histomorphometrically using the light microscope and eyepiece graticule. The amount of newly formed bone was quantitatively measured using histomorphometric methods. Histomorphometric data were analyzed using SPSS software. Mean, standard deviation, mode, and medians were calculated. Tukey HSD test was used to compare the means in all groups. P < 0.05 was considered as statistically significant (i.e., 5% significant level). Results: In the experimental groups, the new bone formation was initiated from the margin of defects during the 7–14 days after implantation. By the end of study, the amount of newly formed bone increased and relatively matured, and almost all of the implanted materials were absorbed. In the control group, slight amount of new bone had been formed at the defect margins (next to the host bone) on day 56. The histomorphometric analysis revealed statistically significant differences in the amount of newly formed bone between the experimental and the control groups (P < 0.001). Conclusion: Combination of OCP/BMG may serve as an optimal biomaterial for the treatment of mandibular bone defects.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed156    
    Printed10    
    Emailed0    
    PDF Downloaded53    
    Comments [Add]    

Recommend this journal