Dental Research Journal

ORIGINAL ARTICLE
Year
: 2019  |  Volume : 16  |  Issue : 3  |  Page : 145--152

A three-dimensional finite element analysis of the influence of varying implant crest module designs on the stress distribution to the bone


Shweta Maruti Patil1, Abhijit Suresh Deshpande1, Rahul Ramesh Bhalerao1, Suryakant Bhanudas Metkari2, Prithviraj Maruti Patil3 
1 Department of Prosthodontics, Tatyasaheb Kore Dental College and Research Centre, Kolhapur, Maharashtra, India
2 Department of Oral Pathology and Microbiology, Tatyasaheb Kore Dental College and Research Centre, Kolhapur, Maharashtra, India
3 Department of Orthodontics, Bharati Vidyapeeth Dental College, Sangli, Maharashtra, India

Correspondence Address:
Dr. Shweta Maruti Patil
Mahatma Gandhi Hospital Campus, New Pargaon, Hatkanangale, Kolhapur, Maharashtra
India

Background: The aim of this study is the effect of stress distribution within the bone with varying implant crest module designs. Materials and Methods: Finite element models of a straight two-piece 4 mm × 13 mm screw-shaped threaded implant with divergent, straight, and convergent implant crest module with their surrounding suprastructure embedded in mandibular second premolar area were created with ANSYS software. Different implant crest module designs incorporated in D2 types of bone under 100N axial and 100N at 20° oblique load were created to evaluate stress distribution in the crestal bone around implant crest module. Results: Maximum von Mises stress was observed at the crestal region of the bone and at crest module region of the implants in all the models. Divergent crest module design shows minimum von Mises stress at crestal bone during vertical loading within bone and at implant crest module. Straight crest module designs result in minimum stresses during oblique loading than vertical loading. Convergent crest module design shows maximum von Mises stress. Conclusion: Within limitations of the study, it was concluded that stress distribution in adjacent compact bone is greatly influenced by implant crest module design. Divergent crest module designs result in minimum stresses at crestal bone and in the implant crest module region, followed by straight and convergent crest module in ascending order of stress distribution.


How to cite this article:
Patil SM, Deshpande AS, Bhalerao RR, Metkari SB, Patil PM. A three-dimensional finite element analysis of the influence of varying implant crest module designs on the stress distribution to the bone.Dent Res J 2019;16:145-152


How to cite this URL:
Patil SM, Deshpande AS, Bhalerao RR, Metkari SB, Patil PM. A three-dimensional finite element analysis of the influence of varying implant crest module designs on the stress distribution to the bone. Dent Res J [serial online] 2019 [cited 2019 May 25 ];16:145-152
Available from: http://www.drjjournal.net/article.asp?issn=1735-3327;year=2019;volume=16;issue=3;spage=145;epage=152;aulast=Patil;type=0