Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 65
  • Home
  • Print this page
  • Email this page
Year : 2019  |  Volume : 16  |  Issue : 2  |  Page : 87-94

Lactobacillus rhamnosus biosurfactant inhibits biofilm formation and gene expression of caries-inducing Streptococcus mutans

1 Department of Medical Biotechnology, Isfahan (Khorasgan) Branch, Islamic Azad University, Tehran, Iran
2 Department of Microbiology, Alzahra University, Tehran, Iran
3 Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Correspondence Address:
Dr. Arezoo Tahmourespour
Department of Medical Biotechnology, Isfahan (Khorasgsn) Branch, Islamic Azad University, Isfahan
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1735-3327.250968

Rights and Permissions

Background: It is cleared that some probiotic strains inhibit biofilm formation of oral bacteria, but its mechanisms are not clearly understood yet. It is proposed that one of the mechanisms can be biosurfactant production, a structurally diverse group of surface-active compounds synthesized by microorganisms. Hence, this study focused on the evaluation of the anti-biofilm and antiadhesive activities of the L. rhamnosus derived-biosurfactant against Streptococcus mutans and its effect on gtfB/C and ftf genes expression level. Materials and Methods: In this in vitro study Lactobacillus rhamnosus ATCC7469 overnight culture was used for biosurfactant production. The biosurfactant effect on the surface tension reduction was confirmed by drop collapse method. Chemical bonds in the biosurfactant were identified by Fourier transform infrared (FTIR). Anti-biofilm and antiadhesive activities of the biosurfactant were determined on glass slides and in 96-well culture plates, respectively. The effect of the biosurfactant on gtfB/C and ftf genes expression level was also investigated after biofilm formation, total RNA extraction, and reverse transcription by quantitative real-time reverse transcriptase polymerase chain reaction (PCR) assay (quantitative PCR). The data were assessed by one-way analysis of variance in the Tukey–Kramer postdeviation test for all pairs. P < 0.05 was considered statistically significant. Results: The FTIR results of biosurfactant showed that it was protein rich. It also showed anti-biofilm formation activity on the glass slide and antiadhesive activity till 40% on microtiter plate wells. It also showed a significant reduction (P < 0.05) in gtfB/C and ftf genes expression level. Conclusion: L. rhamnosus-derived biosurfactant exhibits a significant inhibitory effect on biofilm formation ability of S. mutans due to downregulation of biofilm formation associated genes, gtfB/C and ftf. L. rhamnosus-derived biosurfactant with substantial antiadhesive activity is suitable candidates for use in new generations of microbial antiadhesive agents.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded271    
    Comments [Add]    
    Cited by others 3    

Recommend this journal