Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 127
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2020  |  Volume : 17  |  Issue : 4  |  Page : 244-250

Effect of photo core, LuxaCore, and core max II core building materials on fracture resistance of endodontically-treated teeth restored with fiber-reinforced composite posts and ParaPosts


1 Department of Prosthodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
2 Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Department of Prosthodontics, School of Dentistry, Kashan University of Medical Sciences, Kashan, Iran
4 Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
5 Department of Aesthetic and Restorative, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
6 Dentist, Private Practice, Tehran, Iran

Correspondence Address:
Dr. Farnoush Fotovat
Department of Prosthodontics, School of Dentistry, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd., In Front of Mardom Park, 6516647447 Hamadan
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1735-3327.292068

Rights and Permissions

Background: Post and core treatment is commonly performed for endodontically treated teeth to replace the lost tooth structure and reinforce and protect the remaining dental tissue. This study aimed to compare the effect of three-core building materials on fracture resistance of endodontically-treated teeth restored with fiber-reinforced composite (FRC) posts and ParaPosts. Materials and Methods: This in vitro, experimental study evaluated 108 sound, single-rooted mandibular first premolars extracted for orthodontic purposes. The teeth were randomly divided into nine groups (n = 12) of control (no endodontic or restorative treatment), FRC + Photo Core (Group 2), FRC + LuxaCore (Group 3), FRC + Core Max II with bonding agent (Group 4), FRC + Core Max II without bonding agent (Group 5), ParaPost + Photo Core (Group 6), ParaPost + LuxaCore (Group 7), ParaPost + Core Max II with bonding agent (Group 8), and ParaPost + Core Max II without bonding agent (Group 9). The fracture resistance was measured by applying the load at 45° angle relative to the longitudinal axis of the tooth with a crosshead speed of 1 mm/min using a universal testing machine. Data were through descriptive statistics, Tukey's test, and one-way analysis of variance (α = 0.05). Results: The mean fracture resistance was 454.0 ± 62.7, 410.8 ± 48.3, 365.1 ± 42.1, 423.7 ± 111.7, 392.4 ± 90.0, 292.3 ± 83.9, 242.3 ± 73.4, 278.2 ± 67.9, and 247.3 ± 49.6 N in Groups 1–9, respectively. Group 4 showed the highest fracture resistance, which was significantly higher than this study the value in all ParaPost and control groups (P < 0.05) but had no significant difference with the fracture resistance of other groups (P > 0.05). Conclusion: Fracture resistance is independent of the type of core building material used, and the tested products had no superiority over each other. The mean fracture resistance of FRC post groups were significantly higher than that of ParaPost groups. Furthermore, Core Max II + bonding agent yielded insignificantly higher fracture resistance than Core Max II without bonding agent.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed826    
    Printed16    
    Emailed0    
    PDF Downloaded215    
    Comments [Add]    

Recommend this journal