Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 470
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2021  |  Volume : 18  |  Issue : 1  |  Page : 3

In vitro antimicrobial activity of mineral trioxide aggregate, Biodentine, and calcium-enriched mixture cement against Enterococcus faecalis, Streptococcus mutans, and Candida albicans using the agar diffusion technique


1 Graduated of Dental School, Islamic Azad University, Isfahan, Iran
2 Department of Endodontics, Dental School, Islamic Azad University, Isfahan, Iran
3 Department of Basic Medical Sciences, Dental School, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran

Correspondence Address:
Dr. Maryam Zare Jahromi
Department of Endodontics, Dental School, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1735-3327.310032

Rights and Permissions

Background: This study assessed the antimicrobial activity of Biodentine, mineral trioxide aggregate (MTA), and calcium-enriched mixture (CEM) cement against Enterococcus faecalis, Streptococcus mutans , and Candida albicans. Materials and Methods: In this in vitro study, microbial suspensions were inoculated onto agar plates. The antimicrobial effects of MTA, Biodentine and CEM cement were assessed against E. faecalis, S. mutans, and C. albicans by the agar diffusion test. In each experimental group, 7 plates containing 3 wells were prepared and immediately filled with freshly mixed cements. Positive and negative control plates were prepared with/without the bacterial suspension, respectively. After 2 h of preincubation at room temperature, the plates were incubated at 37°C for 24 h. The diameter of growth inhibition zones was measured after 24 h. Data were analyzed using ANOVA and Tukey's test (α = 0.05). Results: Biodentine showed strong antimicrobial activity against all three microorganisms with an average inhibition zone of 9.10 mm. The inhibitory effect of Biodentine on E. faecalis and C. albicans was significantly superior to that of the other two cements (P < 0.05). MTA and CEM cement showed significantly higher antimicrobial activity against S. mutans (P < 0.05). The antimicrobial effects of Biodentine on S. mutans and E. faecalis were significantly greater than on C. albicans (P < 0.05). Conclusion: All cements revealed antimicrobial properties against the tested microbial strains. Biodentine had stronger antimicrobial effects against E. faecalis and C. albicans compared with MTA and CEM cement. Furthermore, the largest inhibition zones around all three cements belonged to S. mutans.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed32    
    Printed0    
    Emailed0    
    PDF Downloaded1    
    Comments [Add]    

Recommend this journal